CHEMISTRY ENTRANCE TEST SAMPLE PAPER

Sample paper only provides:

Section **A** - 5 multiple choice questions.

Section **B** - 5 multiple answer questions

Section C - 1 fill-in-the-blank question.

Section **D** - 1 short answer question.

Actual Paper

Section A contains 15 multiple choice questions each worth 2 marks (Total 30 marks).

Section **B** contains 15 multiple answer questions each worth 2 marks (Total 30 marks).

Section **C** contains 4 fill-in-the-blank questions each worth 5 marks (Total 20 marks).

Section ${\bf D}$ contains 4 short answer questions each worth 5 marks (Total 20 marks).

TIME ALLOWED: 1.5 HOURS

INSTRUCTIONS TO CANDIDATES

- 1. This paper consists of <u>14</u> pages (excluding the cover page).
- 2. This paper is divided into Sections **A**, **B**, **C** and **D**.

Section **A** contains 15 multiple choice questions each worth 2 marks (Total 30 marks). Section **B** contains 15 multiple answer questions each worth 2 marks (Total 30 marks). Section **C** contains 4 fill-in-the-blank questions each worth 5 marks (Total 20 marks). Section **D** contains 4 short answer questions each worth 5 marks (Total 20 marks).

- 3. A Periodic Table is provided on page 14.
- 4. Answer **ALL** the questions in Sections **A**, **B**, **C** and **D**.

SECTION A – MULTIPLE CHOICE QUESTIONS (30 MARKS)

Answer **ALL** questions in this section.

- A1. Which of the following statements **BEST** explains the interconversion between the solid and liquid states of matter?
 - a. Particles in a solid move slower than in a liquid due to attractive forces.
 - b. Particles in a solid lose energy and become less dense to become a liquid.
 - c. Particles in a solid lose energy and form a rigid structure to become a liquid.
 - d. Particles gain kinetic energy and overcome attractive forces in a solid to become a liquid.
- A2. Which of the following statements describing the bonding in a molecule of water (H₂O) is **TRUE**?
 - a. Water forms an ionic bond between hydrogen and oxygen atoms.
 - b. Water molecules form covalent bonds in a giant covalent structure like diamond.
 - c. Water molecules form metallic bonds between hydrogen atoms.
 - d. Water molecules form covalent bonds where hydrogen and oxygen atoms share electrons.
- A3. Which of the following statements regarding the properties of graphite is **TRUE**?
 - a. Graphite is hard because of its giant covalent structure like diamond.
 - b. Graphite has a high melting point due to weak forces between its layers.
 - c. Graphite is a good insulator because it does not have free-moving electrons.
 - d Graphite conducts electricity because of delocalised electrons between layers of carbon atoms.
- A4. What is the empirical formula of a compound containing 40% sulfur and 60% oxygen by mass? (A_r of S = 32, A_r of O = 16)
 - a. SO₂
 - b. SO₃
 - c. S_2O_2
 - d. S_2O_3

A5.	Which soils	ch of the following substances is commonly used to neutralise excess acidity in?
	a. b. c. d.	Sulfuric acid Sodium chloride Calcium hydroxide Ammonium sulfate
		End of Section A

SECTION B – MULTIPLE ANSWER QUESTIONS (30 MARKS)

Answer ALL questions in this section. Note that there are MORE THAN ONE ANSWER for EACH question.

- B1. Which of the following statements regarding isotopes are TRUE?
 - **a.** Isotopes of an element have the same chemical properties.
 - b. Isotopes have different proton numbers but the same mass number.
 - c. Isotopes have the same number of protons but different numbers of neutrons.
 - d. Isotopes have the same number of neutrons but different numbers of protons.
- B2. Which of the following statements about the structure of ionic compounds are **TRUE**?
 - a. Ionic compounds conduct electricity in the solid state.
 - b. Ionic compounds are soluble in water but not in organic solvents.
 - c. Ionic compounds consist of a giant lattice of oppositely charged ions.
 - d. Ionic compounds have high melting and boiling points due to strong electrostatic attractions.
- B3. Which of the following statements about alloys are **FALSE**?
 - a. Alloys are mixtures of a metal with other elements.
 - b. Alloys are poor conductors of electricity due to impurities.
 - c. Alloys are compounds formed by chemical reactions between metals and non-metals.
 - d. Alloys have different properties than their constituent elements due to the different sizes of atoms.
- B4. Which of the following statements describing relative atomic mass (A_r) and relative molecular mass (M_r) are **TRUE**?
 - a. The M_r of H_2O is $[(2 \times 1) + 16] = 18$.
 - b. A_r compares the mass of an atom to $\frac{1}{12}$ th the mass of a carbon-12 atom.
 - c. M_r is the sum of the relative atomic masses of all atoms in a molecule.
 - d. M_r is calculated by dividing the total mass of a compound by its atomic number.

B5.	Whic	h of the following oxides are classified as BASIC oxides?
	a.	K ₂ O
	b.	CaO
	C.	MgO
	d.	Na ₂ O
		End of Section B

SECTION C – FILL IN THE BLANK (20 MARKS)

Fill in the blanks in the questions. Answer **ALL** questions in this section.

C1.	Atoms are made up of subatomic particles, protons, neutrons, and electrons. The
	number of protons in an atom's nucleus defines its (1) number. Electrons are
	arranged in energy levels or (2) around the nucleus, and their distribution
	determines the chemical properties of an element. In metallic bonding, metal atoms
	lose electrons to form a lattice of (3) ions surrounded by a sea of delocalised
	electrons that move freely, allowing metals to conduct electricity. Unlike metals,
	covalent substances like methane consist of discrete molecules with shared pairs of
	electrons. The physical state of molecular substances at room temperature depends
	on the strength of their (4) forces, which are weaker than the bonds in ionic
	or metallic structures. The relative weakness of these forces in simple covalent
	molecules explains why substances like methane exist in the (5) state at room
	temperature.
	•
	End of Section C

SECTION D – SHORT ANSWER QUESTIONS (20 MARKS)

Answer **ALL** questions in this section in the spaces provided. Express the answers of any calculation questions to **3 SIGNIFICANT FIGURES** unless otherwise stated.

D1. A student carried out an experiment to produce sodium sulfate (Na₂SO₄) by reacting 8.0 g of sodium hydroxide (NaOH) with sulfuric acid (H₂SO₄). The reaction takes place according to the chemical equation shown below.

 $2 \text{ NaOH} + \text{H}_2\text{SO}_4 \rightarrow \text{Na}_2\text{SO}_4 + 2 \text{ H}_2\text{O}$

- (a) Calculate the molar mass of NaOH. (1 mark)
- (b) Calculate the number of moles of NaOH used in the reaction. (1 mark)
- (c) Using the balanced equation, calculate the number of moles of Na₂SO₄ expected to form. (1 mark)
- (d) Calculate the theoretical mass of Na₂SO₄ expected to form. (1 mark)
- (e) The student obtained 9.5 g of Na₂SO₄ after purification. Calculate the percentage yield of Na₂SO₄ for this experiment. (1 mark)

End of Paper

The Periodic Table of the Elements

								Č	2000								
_	=							5	9			=	≥	>	>	=	0
							- 3										4 T
1							hydrogen										helium 2
7	6	_										7	12	14	16	19	20
=	Be											В	O	z	0	ட	Š
lithium 3	beryllium 4											boron 5	carbon 6	nitrogen 7	oxygen 8	fluorine 9	neon 10
23	24											27	28	31	32	35.5	40
Sa	Mg											Αl		۵		70	Ā
sodium 11	magnesium 12											aluminium 13	silicon 14	phosphorus 15	sulfur 16	chlorine 17	argon 18
39	40	45	48	51	52	55	26	29	29	64	65	70	73	75	6/	80	84
×		တွ	F	>	ర	Ā	Fe	රි	ž	రె	Zu		ge	As	Se	-	호
potassium		scandium	titanium	vanadium	τ à	manganese	iron	cobalt 27	nickel	copper	zinc	gallium 2-1	germanium	arsenic	selenium 34	bromine 35	krypton
200	20	08	5	3	7		101	103	106	108	112	15	119	122	-	27	131
8 &	8 i	8 >	7	g g	8 8	٦	2 2	전	2 2	Ag P	2 2	2 5	S	S S	Te T	į –	×
miligin	stronfirm	vttrium	zirconium	miopin	molypdenu	tec	ruthenium	modium	palladium	sliver	cadmium	indium	£	antimony	tellurium	lodine	xenon
37	38	39	40	41	42 m		44	45	46	47	48	49	50	51	52	53	54
133	137	139	178	181 T	184	186	190	192	195	197	201	204 T	207	209 Bi	١۵	۱۵	ا ۾
s.	Pa Ca	. E		<u>v</u>		D .	ŝ		I de	2	n in	7 1	2 50		Didoc	Setatine	1000
caesium 55	banum 56	lanthanum 57 *	hafinium 72	tantalum 73	tungsten 74	menium 75	08mlum 76	77	platinum 78	79	mercury 80	81	82	83	84	85	86
ı	ı	1															
ŗ	Ra	Ac															
francium 87	radium 88	actinium 89 †												4.			
*58-71 L	*58-71 Lanthanoid series	id series															
190-103	†90-103 Actinoid series	series															
				140	141	144	ı	150	152	157	159	162		167	169	173	175
				రి	ፈ	ž	Pa			ලි	d T	ò	운	ш:	۳	۶	3
				oerium 58	praseodymium 59	neodymium 60	neodymium promethium 60 61	samarium 62	europium 63	gadolinium 64	terbiun 65	dysprosium 66	holmium 67	erbium 68		ytterbium 70	Intetium 71
Key		a = relative atomic mass	ic mass	232	1	238	1	1	1		1	ı		-	-	ı	ı
<u>×</u>	_	X = atomic symbol	0	f	Ба	_ _	Š	Pa	Am	Ę.	ă	ັວ	S.	ᇤ		Ž,	<u>۔</u> ک
ے		b = proton (atomic) number	ic) number	thorium 90	protactinium 91	uranium 92	neptunium 93	plutonium 94	americium 95	curium 96	berkelium 97	californium 98	einsteinium 99	fermium 100	mendelevium 101	nobelium 102	lawrencium 103
2	7			200			3	5	3	١	5	2	2		1		