Surface Acoustic Wave Biosensor **Based Point-of-Care System for** Influenza Diagnosis

Technology Overview

The point-of-care (POC) system developed is based on a Surface Acoustic Wave (SAW) biosensor to bind and detect hemagglutinin (HA) of Influenza A H1N1 virus subtype. Based on laboratory evaluation, the POC system is capable of detecting HA antigen with sensitivity down to 1 ng/ml. This POC SAW biosensor system can be further developed for diagnosing other diseases.

Features & Specifications

This technology comprises of:

- a microfabrication process of a Surface Acoustic Wave (SAW) biosensor chip,
- a surface modification protocol for antibody immobilization,
- a sandwich immunoassay on microfabricated SAW biosensor chip for influenza viral protein detection,
- a polymer housing with microfluidic channel for bio sample delivery, and
- a point-of-care (POC) system for SAW biosensor signal reading.

Based to laboratory evaluation, the POC system can detect influenza viral protein with a sensitivity of 1 ng/ml. These biosensor platforms offer label-free assay diagnosis with immediate results and employ small user-friendly form factor, could overcome some of the challenges faced in conventional diagnostic techniques.

Collaborators

Materials Research

Customer Benefits

Compared with other biosensing technologies, SAW biosensor has the advantages of simpler operation, higher sensitivity, faster response and lower cost.

Potential Applications

This SAW biosensor based POC system is developed specifically for influenza viral antigen detection. By immobilizing different antibodies, the biosensor platform can be modified to detect other disease-specific biomarkers. When multiple chips are integrated within a microfluidic channel for specimen processing and delivery, this POC system can be developed for multiplexed testing, which is simultaneous on-site detection of multiple analytes from a single specimen.

Research & Technology Development rtd@tp.edu.sg +65 6780 6428

www.tp.edu.sg